TABLE I

ESTERS OF LONG-CHAIN, HYDROXY ALIPHATIC ACIDS

	Formula,	Vield	a	Saponific	ation no.	Car	bonð	Hvdr	ogenb
Ester	Formula,	%	M. p., °C.	Saponific Calcd.	Found	Caled.	Found	Calcd.	Found
9,10-Dihydroxyoctadecyl 12-hydroxystearate	$C_{36}H_{72}O_5$	60	86-87	95.9	95.0	73.9	73.6	12.4	11.7
9,10-Dihydroxyoctadecyl 9,10,12-trihydroxy-									
stearate	$C_{36}H_{72}O_{7}$	40	103.5 - 104.2	90.9	90.2	70.1	70.5	11.8	11.7
Tetrahydrofurfuryl 9,10-dihydroxystearate	$C_{23}H_{44}O_{5}$	30	59.8- 60.6	140.1	142.7	69.0	68.8	11.1	11.3
^a Purified products after at least three cry Welsh of this Laboratory.	stallizatior	ıs fr	om 95% ethan	10 1 . ^b A	nalyses	were a	made b	oy Mar	y Jane

waxy solids. The purified products were white, odorless solids with the same solubility characteristics as the esters previously reported.^{1,5}

(5) Swern, Jordan and Knight, THIS JOURNAL, 68, 1673 (1946).

EASTERN REGIONAL RESEARCH LAB-ORATORY, PHILADELPHIA 18, PA., ONE OF THE LABORATORIES OF THE BUREAU OF AGRICULTURAL AND INDUSTRIAL

CHEMISTRY, AGRICULTURAL RESEARCH ADMINISTRATION, UNITED STATES DEPARTMENT OF AGRICULTURE

RECEIVED JANUARY 2, 1947

New Compounds as Plant Growth Regulators

The compounds listed below were prepared for testing for plant growth regulating activity under a contract between the Chemical Warfare Service and the Ohio State University Research Foundation. The activity of some of these compound has been reported in the *Botanical Gazette*, 107, June (1946).

Methods

A. The phenol was condensed with ethyl bromoacetate in ethanol in presence of an excess of concentrated aqueous potassium carbonate solution at room temperature. The ester formed was isolated and saponified in the usual way. The yield of acid reported is based on the original phenol used. In some cases the reaction mixture was saponified without any attempt at isolation of the ester.

B. p-Chlorophenol containing a catalytic amount of sodium p-chlorophenolate was treated at 130° with acrylonitrile.¹
C. The halophenyl γ-bromopropyl ether was pre-

C. The halophenyl γ -bromopropyl ether was prepared from the sodium halophenolate in ethanol and 1,3dibromopropane. An ethanol solution of the ether was converted to the nitrile² by sodium cyanide in the usual

(1) I. G. Farbenindustrie, French Patent 833,734; Chem. Zentr., 110. I. 1451 (1939).

(2) Lohmann, Ber., 24, 2631 (1891).

manner. The yield of nitrile reported is based on the original phenol used.

D. A solution of the nitrile in glacial acetic acid was hydrolyzed by boiling with aqueous sulfuric acid during six to eighteen hours.

E. A solution of the phenol in pyridine was treated with an equimolecular quantity of ethyl chlorocarbonate at 0° ; followed by stirring while allowing to warm to room temperature during one to three hours.

F. (a) Esterification was carried out by refluxing the acid in benzene solution with an excess of the alcohol in presence of a little *p*-toluenesulfonic acid, while removing the water produced in the reaction as fast as formed. (b) Concentrated sulfuric acid was used as catalyst. (c) In the preparation of a methyl ester F(a) was followed, with omission of benzene.

G. A crude sample of 2,4-diiodophenol³ was converted to the phenoxyacetic acid by Method S. The product was esterified by Method F(a) saponified and the resulting mixture of mono- and diiodophenoxyacetic acids separated by partial precipitation as the potassium salts. Pure 2,4-diiodophenoxyacetic acid was obtained by recrystallization of the free acid from benzene-Skellysolve-B. The yield of acid reported is based on the phenol used for iodination.

H. The corresponding allyl ester was chlorinated in carbon tetrachloride solution at 0°.

I. Reaction of alkali halophenolates with halogenated esters or alcohols. (a) The sodium halophenolate was refluxed with diethyl chlorofumarate in xylene and the resulting ester saponified.⁴ (b) Dry potassium 2,4dichlorophenolate was heated with an equimolecular quantity of ethylene bromohydrin in xylene at 150° for five hours. (c) The sodium halophenolate in ethanol was treated at 75° with ethyl a-bromoheptoate and heated at 75-100° for two hours. The resulting ester was then saponified.

J. A solution of the ketoxime in dioxane and a suspension of the calculated quantity of sodamide in dioxane

(3) Brenans, Bull. soc. chim., [3] 25, 629 (1901).

(4) Ruhemann, Ber., 54, 912 (1921).

FSA no, Compound Meti		Vield,	°C. ^{B. p.,}	M. p., . cor., °C.	to	nt _D	Mol. formula		Found Found		dro- n, % puno4	ge	itrogen, halo- en or neutral equivalent E
80 3,5-Dichlorophen- A oxyacetic acid	ł	50.7 ·		117.5-118			C8H6Cl2O3	43.5	43.6	2.7	3,3	221	227
430 2,4-Dichloroman- C delic acid)	15		119.5-120	. 5		CsH6Cl2O3					221	222
93 2-Bromo-4-chloro- T phenoxyacetic acid	Г :	27.9		139-140.5			C8H8C1BrO3	36.2	36.5	2.3	2.5	266	267
94 2-Chloro-4-bromo- T phenoxyacetic acid	7	60		144.5-146.	.5		C8H6ClBrO3	36.2	36.4	2.3	2.4	266	270'
142 2-Iodo-4-chloro- A phenoxyacetic acid		40.3°		136-140			C8H6IClO8	30.7	30.7	1.9	2.2	313	314
150 2-Chloro-4-iodo- A phenoxyacetic acid		đ		138-141			C5H6IClO3	30.7	30.8	1.9	2.2	313	310
71 2,4-Dibromophen- A oxyacetic acid	. 1	65 ⁸		151.8-153.	5		CsHsBr2O3	31.0	30.8	1.9	2.0	310	309
145 2,4-Diiodophenoxy- G	÷ :	2		165-167			Ĉ8H8I2O8					404	402

TABLE I

New Compounds

Table I	(Continued)
---------	-------------

					T	`ABLE I (C)	ontin	ued)						
FSA			Vield,	В	. p., Mm.	M. p., cor., °C.	ť°		Mol.	Carb%		Calcd. ^{adn} Found %	gen ec	ogen, halo- or neutral uivalent
no.	Compound Me 4-Methyl-4-tri- chloromethyl-2-chl ro-2,5-cyclohexa-	x	d % 52.6	ιc,	MIII.	cor., °C. 182–183	L	nt _D	formula C8H7Cl4NO			0 ⊈ 2.6 2.7		Υ. Έ
172	diene-1-one oxime β-Hydroxyethyl 2,4-	Ib	44	121-128	1	57-58			C8H8Cl2O2	46.4	46.8	3.94,2	1	
137	dichlorophenyl eth S-2,4-Dichloroben- zylisothiourea	er N	h			222-227			C ₈ H ₉ Cl ₈ N ₂ S	35.4	35.6	3.3 3.4		
427	hydrochloride 2,4-Dichlorocin-	м	70			235-236 ^a			C9H6Cl2O2				217	220
1 16	namic acid m-Trifluoromethyl- phenoxyacetic acid	s	64			93.5-94.0			C9H7F8O8				220	220
96	Ethyl 2,4-dichloro- phenyl carbonate	E	66	98-99	1		20	1.5180	C ₉ H ₈ Cl ₂ O ₃				30,2	30.5
164	Methyl 2,4-dichloro- phenoxyacetate	Fc	74	119	1				C9H8Cl2O3	46.0	46.4	3.4 3.7		
26	2-Chloromethyl-4- chlorophenoxy- acetic acid	U	73 ^b			127-129			C9H8Cl2O8	46 .0	46.2 3	3.4 3.5	235	233
38	1-(2,4-Dichloro- phenoxy)-2,3-	Р	10	107-109	1		25	1.5565	C9H8Cl2O2	49.3	49.2	3.7 3.8		
72	epoxypropane Methyl 2,4-di- bromophenoxy-	A	65 ⁸	150	1				C9H8Br2Os	33.4	33.8	2.5 3.0	I	
140	acetate Ethyl 2,4-dibromo-	Е	79	135-136	2		20	1.5574	C9H3Br2O3				49. 4	50.1
84	phenyl carbonate β -(p-Chlorophen-	в	40	dec.	2	46.4-47.0			C ₉ H ₈ ClNO				7.7	$7.0^{l}(N)$
4 40 ·	carboxymethyl	z	35.5			73-75			C9H3Cl2SO2	43.1	43.1	3.2 3.5	251	248
441	sulfide 2,4-Dichlorobenzyl- carboxymethyl	R	80.8			181-182.5			C ₉ H ₃ Cl ₂ SO4	38.2	38,7	2.8 3.1	283	280
434	sulfone 1-(p-Chlorophen- oxy)-2,3-epoxy-	Р	3 6	93-95	1		25	1.5430	C9H9ClO2	58.5	58.3	4.9 5.1		
458	propane 2-Methyl-4-fluoro-	s	51			147-148			C9H9FO3				184	187
97	•	Α	34.5			122-124			C9H9BrO2	44.1	44.6	3.7 3.7	245	242
150	phenoxyacetic acid p-Chlorobenzylmer-		75			61-62			C ₉ H ₉ ClSO ₂				217	218
451	captoacetic acid p-Chlorobenzylsul- fonylacetic acid	R	40			151.5-152.5			C ₉ H ₉ ClSO ₄				249	247
428	Benzylcarboxy- methyl sulfone	R				135-137			C9H10SO4	50,5	50.7	4.7 4.9	214	216
158	2,4-Dichlorophen- oxyfumaric acid	Ia	14			235-236 ⁴ (dec.)			C10H8Cl2O8				139	138
432	2-Cyanomethyl-4- chlorophenoxy- acetic acid	w	72 ^k			156.5-159			C16H8ClNO3	53,3	53.5	3.5 3.4	226	228
439	1-(m-Trifluoro- methylphenoxy)-	Р	23	80-83	1		25	1,4650	C10H9F3O3	55.1	55.5	4.2 4.2		
148	2,3-epoxypropane β-Chloroethyl 2,4- dichlorophenoxy-	Fa	69	157-158	1.5	39.0 39.6			C10H9Cl 3O3	42.4	42.9	3.2 3.5	i	
100	acetate β-Chloroethyl 2,4- dibromophenoxy-	Fb	89.8	182-184	0.5				C16H9ClBr2O3	32,2	32.6	2.4 2.8	:	
174	acetate β-Bromoethyl 2,4- dichlorophenoxy-	Fa	89	166-168	2	33. 6- 34.2			C10H9BrCl2O3	36.6	37.0	2.8 3.0	I	
151	acetate β-Bromoethyl 2,4- dibromophenoxy-	Fa	83.9			56-58			C10H9Br3O8	29.0	29.0	2.2 2.6		
414	acetate 2-Acetyl-4-chloro- phenoxyacetic acid	A				17 4- 176			C10H9ClO4	5 2.5	52.4	4 .0 4 .2	2 2 9	232

NEW COMPOUNDS

TABLE I (Continued)

						ABLE 1 (C	.onii	nuea)							
FSA no.	Compound N		Vield od % 40.6		mm.	M. p., cor. °C.		nt _D	Mol. formula	Carled.	Found	Hyo gen Calcd	Found %	Calcd.	ogen, halo or neutra uivalent
	2-Carboxymethyl-4- chlorophenoxy- acetic acid γ-(2,4-Dichloro-	c	40.6 35	136.5-137.5 cc	1. 1	167.8-169.5 46-48 ⁹	20	1.5472	C10H9ClO5 C10H9Cl2NO	49.1	49.4	3.7	3.8	6.1	124 5.9 (N
91	phenoxy)-butyro- nitrile γ-(p-Chlorophe-	с	31			44.5-45.3			C10H10CINO					7.2	7.4 (N
	noxy)-butyronitri γ-(2,4-Dichloro- phenoxy)-butyric	D	72						C ₁₀ H ₁₀ Cl ₂ O ₃					249	251
146	acid β-Chloroethyl p- chlorophenoxy-		60	156-157	2.5	41.5-42.5			C10H10Cl2O3	48.2	48.7	4.1	4.1		
147	acetate β-Bromoetlıyl <i>p</i> - chlorophenoxy-	Fa	80	182-184	4.5	39 .6 -40.4			$C_{10}H_{10}ClBrO_{3}$	40.9	41.4	3.4	3.6		
154	acetate β-Hydroxyethyl 2,4 dichlorophe¤oxy-		20	177-180	1.5				$C_{10}H_{10}Cl_2O_4$	45.3	45.6	3.8	3.9		
66	acetate 4-Methyl-4-tri- chloromethyl-2,5- cyclohexadien-1- one-O-carboxy-	J	11.7			118.5-120			C10H10ClaOaN	40.2	39.7	3,4	3.4	299	304
435	methyl oxime 1-(2-Methyl-4- chlorophenoxy)- 2,3-epoxypropane	Р	32	103-105	1		25	1.5385	C10H11C1O2	60.5	60.7	5.6	5.8		
424	2-Ethyl-4-chloro-	Α	40,5			109-112			C10H11C1O2	56.0	56.0	5.1	5.1	215	211
153	phenoxyacetic ac β-Hydroxyethyl p- chlorophenoxy-		23	163-166	1.8	5 29-30			C10H11C1O4	52.1	52.2	4.8	4.9		
408	acetate N-(2-Hydroxy- ethyl)-α-(2,4-di- chlorophenoxy)	La	86			121.5-122.0)		C10H11Cl2NO3	45.5	45.7	4.2	4.3		
423	acetamide N-(2-Hydroxy- ethyl)-a-(p-chloro)-	79.3			94.5-96			C ₁₀ H ₁₂ NClO ₃	52.3	52.0	5.2	5.0		
199	phenoxy)-acetami Isopropyl O-phenyl carbamate		43.8			81.8-83.5			C10H13NO2	67.1	67.3	7.3	7.6		
185	2-Methyl-4-chloro- phenoxyfumaric a		15			223-227 ^a dec.			C11H9ClO5					128	128
156	Allyl 2.4-dichloro- phenoxyacetate	Fa	75	134-134.5	2		25	1.5395	$C_{11}H_{10}Cl_2O_3$	50.6	50.9	3.9	3.9		
163	β-Trichloroethyl 2- methyl-4-chloro- phenoxyacetate	Fa	66.3	179-180	1				$C_{11}H_{10}Cl_4O_8$	39.8	40.1	3.0	3.4		
176 3	2,3-Dichloropropyl 2,4-dichlorophen- oxyacetate	н	49	183-185	2		19.4	1.5530	$C_{11}H_{10}Cl_4O_8$	39.8	40.0	3.0	3,1		
165 ,	3,γ-Dichloropropyl- 2,4-dibromophen- oxyacetate	н	38.9	190195	0.5				C11H10Cl2Br2O3	31,4	31′.4	2.4	2.6		
104 2	2-Ally1-4-chloro- phenoxyanetic acid		36.3			10 4 106			C ₁₁ H ₁₁ ClO ₃	58.3	58.2	4.9	5.0 :	227	229
155 .	Allyl p-chlorophen-		82	122-124	2		25	1.5255	C11H11ClO8	58.3	58.7	4.9	5.1		
175 5	oxyacetate 2,3-Dichloropropyl p-chlorophenoxy- acetate	н	34	169–171	2		20	1.5418	C11H11Cl3O2	44.4	43.8	3.7 3	3.7		
167 1	sopropyl 2,4-di- chlorophenoxy- acetate	Fa	83.6	139-140	1				$C_{11}H_{12}Cl_2O_8$	50.2	50.3	4.6 4	1.6		
177]	Ethyl-2-chloro- methyl-4-chloro- phenoxyacetate	v	73 ^b	140-142	1				C11H12Cl2O8	50. 2	50.5	4.6	1.7		
60 ¢	P-Bromoethyl 2- methyl-4-chloro- phenoxyacetate	Fa	75	153-155	1				C ₁₁ H ₁₂ ClBrO ₃	42.9	42.7	3.9 4	1.0		

New Compounds

TABLE I (Continued)

					Т	ABLE I (C	ontin	ued)						
DC 4			771-14	ħ					Mal	Carcd.	Found B	Hydro gen, % Found	- gen e	rogen, halo or neutral quivalent 멸
FSA no.	Compound I	Metho	Vield, od %	°C. ^D	^p ., Mm.	M. p., cor., °C.	t°	$n^{t}{}_{\mathrm{D}}$	Mol. formula	Cal	Fot	Calcd. Found	Calcd	Гоци
178	2-Propyl-4-chloro- phenoxyacetic aci		30.9			115-118			C11H18C1O8	57.8	57.9	5.8 5.	9 229	230
183	Ethyl 2-methyl-4- chlorophenoxy-	Fa	75	115–117	1		23	1.5150	C11H13ClO8	57.9	58.0	5.7 6.)	
406	acetate N-(2-Hydroxy- ethyl)-α-(2-methy 4-chlorophenoxy)		81			98-99			C11H14CINO3	54.2	54.3	5.8 5,	6	
78	acetamide 7-Chloro-1 naphth- oxyacetic acid	A	50			169.0-169.6			C12H9ClO3				237	243
455	Methallyl 2,4-di- chlorophenoxy- acetate	Fa	80	130132	2				C12H13ClO8	59.8	60.2	5.4 5.	8	
195	2-Nitro-2-methyl- propyl 2,4-dichlo- rophenoxyacetate		65			45.0 → 45. 6			C12H18Cl2NO5	44.7	44.8	4.1 3.	7	
456	Crotyl p-chloro- phenoxyacetate		68.4	141-142	2				C12H14ClO3	5 9.6	59.5	5.8 5.	8	
143	n-Butyl 2,4-di- chlorophenoxy- acetate	Fa	92	146-147	1				$C_{12}H_{14}Cl_2O_8$				25.6	26.1
171	Isobutyl 2,4-di- chlorophenoxy-	Fa	86.8	133-134	1				$C_{12}H_{14}Cl_2O_3$	52.0	52.3	5.0 5,3	3	
184	acetate n-Propyl 2-methyl- 4-chlorophenoxy-	Fa	81	109.5-111.5	0.5		23	1.5100	C12H15ClO3	59.4	59.2	6.2 6.	3	
402	acetate 2-s-Butyl-4-chloro-	Α	50			124-125.5			C12H15ClO3	59.4	59.7	6.2 6.3	2 243	240
81	phenoxyacetic aci 2-Bromo-4-t-butyl-	Α	19			110.8-111.2			C12H16BrO2				287	285
182	phenoxyacetic ac: Isopropyl 2-methyl- 4-chlorophenoxy- acetate		73	99–101	<1		20	1.5070	C12H15ClO3	59.4	59.7	6.26.	5	
407	N-(2-Hydroxyiso- propyl)-α-(2-meth 4-chlorophenoxy)	-	95			80.0-80.5			C12H16ClNO8	55.9	55.8	6.36.	1	
168	acetamide Amyl 2,4-dichloro-	Fa	69.3	164	2				$C_{18}H_{16}Cl_2O_6$	53.6	53.9	5.55.	7	
169	phenoxyacetate Isoamyl 2,4-di- chlorophenoxy-	Fa	81.8	136-138	1				C13H18Cl2O3	53 .6	54.0	5.5 5.	8	
198	acetate β-Chloroethyl 2- propyl-4-chloro-	Fa	73	173-175	4				C13H18Cl2O2	53.6	53.8	5.5 5.	9	
422	phenoxyacetate α-(2,4-Dichloro- phenoxy)-heptyli	Ic c	79			100.0-100.5			C13H16Cl2O3				291	291
194	acid 2-Nitro-2-methyl- propyl 2-methyl- 4-chlorophenoxy-		80			60.6-61.6			C13H15ClNO5	51.8	52.0	5.3 5.	0	
179	acetate Ethyl 2-propyl-4- chlorophenoxy-	Fa	80	134-136	1				C13H17ClO3	60. 8	61.1	6.67.	0	
425	acetate 2-Amyl-4-chloro-	A	10.6			127.5-129.5			C13H17ClO3	6 0.8	61.2	6.66.	8 257	256
418	phenoxyacetic ac α -(p-Chlorophen-	Ic	78			79.5-80			C13H17ClO5				257	257
89	oxy)-heptylic acio α -(p-Chlorophenyl) 2,4-dichlorophen-	- A	48.6			145-146			C14H9Cl3O3	50.7	51.0	2.73.	0 332	332
442	oxyacetic acid Bis-(2,4-dichloro-	z	32.1	197.5-199	2				C14H10C14S	47.8	47.8	2.83.	0	
448	benzyl) sulfide Bis-2,4-dichloro-	Y	94.3^{k}			69-71			$C_{14}H_{10}Cl_4S_2$	43.8	43.3	2.6 2.	8	
88	benzyl disulfide α-(p-Chlorophenyl) p-chlorophenoxy-		68.7			138.5-140.5			C14H10Cl2O3	56 .6	56,9	3.43.	8 297	300

New Compounds

					1	ABLE I (C	oncu	uaea)					
										Carbon, %	Hydro- gen, %	gen ec	ogen, halo- or neutral quivalent
FSA no.	Compound M		Vield, d %	°C. ^{B. p}	, Mm.	M. p. cor. °C.	t°	n^t D	Mol. formula	Calcd. Found	Calcd.	Caled.	Found
	Bis-2,4-dichloro- benzyl sulfone	R	85 47. rí			197-199			C14H10Cl4SO2	43.8 43.8			
	2-(2'-Chlorophenyl)- phenoxyacetic acid	l	47.5 ⁷			123.5-125.5			C14H11ClO3	64.0 63.8			258
	2-(4'-Chlorophenyl)- phenoxyacetic acid	l	85 ⁷ 7			109.5-110.5			C14H11ClO3	64.0 64.2			262
429	2-Cyclohexyl-4- chlorophenoxy- acetic acid	Α	,			167.5-170.5			C14H17ClO3	62.6 62.6	6.3 6.3	269	269
400	2,2-Dimethyl-1,3- dioxalane-4-meth- anyl-p-chloro- phenoxyacetate	к	71	160	1		25	1.5108	C14H17ClO5	55.9 55.9	5.7 5.9		
35	β-Diethylamino- ethyl 2,4,5-tri- chlorophenoxy- acetate	Lc	89	176-178	1.5				C14H18Cl3NO3	47.4 47.1	5.1 4.9	4.0	3.9 (N)
180	Isopropyl 2-propyl- 4-chlorophenoxy-	Fa	83.8	155-157	5				C14H19ClO8	62.1 62. 3	7.0 7.4		
403	acetate Ethyl 2-s-butyl-4- chlorophenoxy- acetate	Fa	89.9	128-129	1				C14H19ClO3	62.2 62.3	7.07.4		
420	α-(2-methyl-4- chlorophenoxy)- heptylic acid	Ic	91			72.5-73			C14H19ClO3		27	1 27	1
465	N-(m-Trifluoro- methylphenyl)-α- (2,4,5-trichloro- phenoxy)-acetamic	La	73			191.5-192.5			C15H9ClsF3NC	λ.		3,5	3.5 (N)
463	N-(<i>m</i> -Trifluoro- methylphenyl)-α- (2,4-dichlorophen- oxy)-acetamide	La	96			148. 6 -149.2			C15H10Cl2F8N	01		3.9	4.1 (N)
464	N-(m-Trifluoro- methylphenyl)-α- (p-chlorophen- oxy)-acetamide	La	100			94-95			C15H11ClF3NC	02		4.3	4.6 (N)
401	2,2-Dimethyl-1,3- dioxolane-4-metha 2-methyl-4-chloro- phenoxy-acetate	K nyl-	82	151-152	1		25	1.5100	C ₁₅ H ₁₉ ClO ₅ .	57.2 57.1	6.1 6.1		
421	Ethyl α -(2,4-di- chlorophenoxy)- heptoate	Ic	74	131.5–133	1		25	1.5038	C15H20Cl2O8	56.4 56.7	6.3 6.4		
417	Ethyl α-(p-chloro- phenoxy)-heptoate	Ic	65	121-123	1		25	1.4938	$C_{16}H_{21}ClO_3$	63.3 63.0	7.4 7.7		
462	N-(m-Trifluoro- methylphenyl)-α-(2 methyl-4-chloro- phenoxyacetamide	La	88			138-139			C16H13ClF3NO	2		4.1	4.3 (N)
144	2-Ethylhexyl 2,4- dichlorophenoxy- acetate	Fa	76.5	173-174	0.5				C ₁₈ H ₂₂ Cl ₂ Oz			21.3	21.7
170	Octyl 2,4-dichloro- phenoxyacetate	Fa	60	173-174	1				C16H22Cl2O3	57.7 58.0	6.6 6.8		
419		Ic	42	126-127	1	-	26	1.4930	C16H25ClOs	64.3 64.3	7.8 7.7		

^a M. p. taken in copper block (Bergstrom, *Ind. Eng. Chem., Anal. Ed.*, **9**, 340 (1937). ^b Part isolated as acid and part as ester. ^c Yield based on ethyl ester isolated. ^d No yield reported because impure iodinated chlorophenol was used. ^e No yield reported because crude phenol was used. ^f Exact yield not determined; yield in 40-50% region. ^e Solidified after standing for some time. ^h No yield reported since only part was isolated, the remainder being converted to mercaptan. ⁱ No yield reported because of accidental loss owing to vigorous reaction. ⁱ Isolated as ethyl ester—yield based on unrecovered phenol. ^k Crude yield. ⁱ Low analysis for nitrogen but acid prepared by hydrolysis was identical with known acid, Chakravorti and Dutta, J. Ind. Chem. Soc., **16**, 639 (1944).

were boiled until evolution of ammonia had ceased. An excess of methyl bromoacetate was added and the mixture refluxed for three hours.

refluxed for three hours. K. The acid chloride dissolved in dry benzene was added to a slight excess of isopropylidene glycerol and of collidine in dry benzene at 0° , followed by heating of the mixture at 50° for one hour.

L. Reaction of acid chlorides with aminoalcohols. (a) The acid chloride in dry benzene was added, with cooling, to an excess of the aminoalcohol in dry benzene, followed by heating to 50° for one-half hour and allowing to come to room temperature. (b) The acid chloride was added to an excess of the amino alcohol in benzene. (c) A 30% excess of the aminoalcohol was added to the acid chloride in benzene. After two hours the reaction mixture was worked up.

M. Perkin reaction using 2,4-dichlorobenzaldehyde.

N. 2,4-Dichlorobenzylisothiourea hydrochloride was prepared from the corresponding chloride and thiourea.⁵

O. 2,4-Dichlorobenzaldehyde was converted to the nitrile by way of the bisulfite addition compound. The nitrile was hydrolyzed by heating with concentrated hydrochloric acid for five hours at 100° .⁶

P. The epoxypropane compound was formed by reaction of the phenol with epichlorohydrin in presence of aqueous sodium hydroxide solution for forty-eight hours at room temperature.⁷

Q. *p*-Chlorobenzyl mercaptan dissolved in aqueous sodium hydroxide was treated with chloroacetic acid.⁸

R. The corresponding mercapto compound dissolved in a mixture of equal volumes of acetic anhydride and glacial acetic acid was oxidized by hydrogen peroxide.

S. The phenol was condensed with chloroacetic acid in presence of aqueous sodium hydroxide.⁹

T. The chlorophenoxyacetic acid was brominated at 80° for six hours with excess bromine in presence of aluminum chloride.

U. The ester was hydrolyzed by refluxing for one and one-half hours with a mixture of concentrated hydrochloric acid and glacial acetic acid.

V. Dry hydrogen chloride was passed into a mixture of ethyl p-chlorophenoxyacetate, paraformaldehyde and anhydrous zinc chloride, heated at 60°, for one hour.

W. Ethyl 2-chloromethyl-4-chlorophenoxyacetate in acetone was refluxed for six hours with an aqueous solution of potassinm cyanide, using sodium iodide as a catalyst. The cyanomethyl acid was obtained by acidification of the mixture after removal of acetone.

X. The oxime was formed by addition of an excess of hydroxylamine hydrochloride in concentrated aqueous solution to a solution of the ketone in alcohol.¹⁰

Y. The mercaptan was converted to the disulfide by an excess of hydroxylamine hydrochloride in alcoholic solution.¹¹

Z. A solution of the mercaptan in absolute ethanol was refluxed with a 10% excess of sodium methylate for one-half hour.

(a) A slight excess of ethyl bromoacetate was added and the mixture refluxed for one hour. Saponification was accomplished by alcoholic sodium hydroxide solution and the acid isolated in the usual manner.

(b) A slight excess of benzyl chloride was added and the mixture refluxed for one hour.

(5) Urquhart, Gates and Connor, "Organic Syntheses," 21, 36 (1941).

(6) Gnehm and Schüle, Ann., 299, 347 (1898).

(7) Marle, J. Chem. Soc., 101, 305 (1912).

(8) Gabriel, Ber., 12, 1639 (1879).

(9) Hayes and Branch, THIS JOURNAL, 65, 1555 (1943).

(10) Zincke and Suhl, Ber., 39, 4148 (1906).

(11) Fasbender, ibid., 21, 1470 (1888).

Department of Chemistry	Melvin S. Newman
THE OHIO STATE UNIVERSITY	William Fones
Columbus 10, Ohio	Mary Renoll
~ · · ·	00 1010

RECEIVED AUGUST 22, 1946

Derivatives of Fluorene

Tetrabiphenylene-butane.—A solution of 4 g. of 1bromodibiphenylene-ethane¹ in 75 cc. of purified benzene

(1) Grignard and Courtot, Compt. rend., 152, 1494 (1911); Courtot, Ann. chim., (9) 4, 165 (1915).

containing freshly prepared copper powder was heated in a carbon tetrachloride bath for ten hours, and since the reaction appeared to be rather sluggish the heating was continued on a steam-bath for an additional eight hours. The reaction mixture was filtered, the filtrate removed by distillation, and the residue consisting of dibiphenylene-ethylene and tetrabiphenylene-butane was crystallized from ethyl acetate; yield of butane derivative, 1.1 g. This was recrystallized from acetic acid yielding glistening needle-like prisms, m. p. 291°.

Anal. Calcd. for C₅₂H₃₄: C, 94.80; H, 5.20. Found: C, 94.90; H, 5.49.

The compound is soluble in benzene, pyridine, ethyl acetate, carbon tetrachloride and ether.

Fluorenyl-9-ethylcarboxylate-9-dimethyloxide.—This compound was prepared by the reaction of 6.5 g. of fluorenyl-9-ethylcarboxylate, 0.75 g. of sodium and 3 cc. of chloromethyl ether in anhydrous ether by the method of Wislicenus and Mocker.² The reaction product was extracted with ether and distilled at $262-268^{\circ}$ at 1 mm. pressure, yield 5 g., crystallized from ligroin as large prisms, m. p. $64-65^{\circ}$.

Anal. Calcd. for $C_{18}H_{18}O_3$: C, 76.56; H, 6.43. Found: C, 76.51; H, 6.35.

Various attempts to hydrolyze or to decarboxylate the ester were unsuccessful. The compound was practically unaltered after fifteen minutes heating at 270° and ten minutes at 360° in a sealed tube. No change was effected after letting it stand in alcoholic ammonium hydroxide for several weeks or by heating an alcoholic solution of the ester in presence of hydrochloric acid. By heating it in an alcoholic solution of sodium hydroxide at 150° for six hours, less than 10% of the ester was converted to 9-methylfluorene,² m. p. 45°, which was isolated by two sublimations and recrystallization from methyl alcohol.

Anal. Calcd. for $C_{14}H_{12}$: C, 93.28; H, 6.72. Found: C, 93.45; H, 6.69.

Triphenylphosphine Fluorenylidenide,

 $(C_6H_5)_3$.—Staudinger and Meyer,³ attempted to prepare triphenylphosphazine fluorenylidenide by pyrolyzing triphenylphosphazine fluorenylidenide and obtained a resinous product which could not be purified. We found that this compound could be prepared in the following manner. To a solution of 3 g. of 9-bromofluorene in about 40 cc. of nitromethane was slowly added 3.21 g. of triphenylphosphine. As the last portion was added, fluorenyl-9-triphenylphosphonium bromide began to crystallize. The reaction was exothermic, evidenced by a 10° rise in temperature of the solution. After two hours, 5.75 g. of the bromide was removed, m. p. 303° (dec.). Triphenylphosphine fluorenylidenide was obtained by dissolving 3 g. of the salt in 150 cc. of boiling alcohol and making the solution alkaline with about 8 cc. of ammonium hydroxide. Yellow glistening plates crystallized as the solution cooled, weight 2.4 g., m. p. 253°.

Anal. Calcd. for $C_{31}H_{28}P$: C, 87.28; H, 5.44; P, 7.28. Found: C, 87.15; H, 5.66; P, 7.25, 7.26.

The compound remained unaltered when refluxed with aniline, phenol and hydrazine hydrate in alcohol.

BUREAU OF PLANT INDUSTRY, SOILS AND

AGRICULTURAL ENGINEERING

U. S. DEPARTMENT OF AGRICULTURE LOUIS A. PINCK BELTSVILLE, MARYLAND GUIDO E. HILBERT⁴ RECEIVED AUGUST 16, 1946

- (2) Wislicenus and Mocker, Ber., 46, 2772 (1913).
- (3) Staudinger and Meyer, Helv. Chim. Acta., 2, 619 (1919).
- (4) Present address: Bureau of Agricultural and Industrial Chem-
- istry, U.S. Department of Agriculture, Peoria, Illinois.